33 research outputs found

    Design of a Low-Voltage Distribution Transformer Based on Inductive Filtering

    Get PDF
    Adopting the connection group structure of Dd0yn11, this paper designs a novel low-voltage (LV) distribution transformer (DT) based on inductive filtering (IF), and verifies the proposed transformer through a comprehensive innovation experiment. Firstly, the functional relationship between valve-side harmonic current and grid-side current was derived according to the winding model, and the filtering features were obtained to compute the impedance between the valve- and grid-side windings. Next, the design calculation was carried out by the engineering magnetic circuit (EMC) method. After that, a three-dimensional (3D) model was established for the proposed transformer on ANSYS Maxwell. The simulation results show that the proposed transformer meets the design requirements on the relevant parameters, and eliminates the harmonic pollution in the grid. Finally, the proposed transformer was proved correct and effective through experiments, and found to stimulate studentsꞌ interest in learning and innovation

    From Open CNC systems to Cyber-Physical machine tools: a case study

    Get PDF
    The aim of next-generation Computer Numerical Control (CNC) is shifting from an open architecture, which has better flexibility, adaptability, versatility and expansibility, to a cyber-physical model, which offers real-time monitoring and control of the machining processes. This paper introduces a real case study to demonstrate such tendency from Open CNC systems to Cyber-Physical Machine Tools (CPMT) based on a low-power embedded platform. Firstly, a new open CNC architecture is presented, which is able to achieve high-precision, high-efficiency, and low-power consumption. Secondly, the open CNC architecture is extended to a CPMT by using Wireless Sensor Networks (WSN), where WSN is utilized to enable monitor and control the machining processes, and the integrated development platform is termed as CPMT. Finally, a case of health monitoring system for CPMT is designed and its system testing is carried out

    An Inductive Active Filtering Method for Low-Voltage Distribution Networks

    No full text
    Three-phase unbalanced and nonlinear loads aggravate harmonic problems in low-voltage distribution networks. In this paper, a hybrid inductive and active filter (HIAF) system with a Ddy converter transformer is proposed. By establishing the circuit and corresponding mathematical models, the working mechanism of the HIAF system in harmonic suppression is analyzed. In the designed HIAF system, we install the detection point on the grid-side winding and the compensation point on the filtering winding. Since both windings have the same connection, no phase compensation between the harmonic detection point and compensation point is demanded. Eventually, we apply a harmonic damping control and zero-value impedance control strategy to realize harmonic suppression under both balanced and unbalanced loads. The simulation results show that the HIAF system can effectively suppress harmonics under various load conditions

    Task offloading in cloud-edge collaboration-based cyber physical machine tool

    No full text
    The Cyber-Physical Machine Tool (CPMT) is a promising solution for the next generation of machine tool digitalization and servitization due to its excellent interconnection, intelligence, adaptability, and autonomy. The rapid development of next-generation information technologies, such as the Internet of Things (IoT) and artificial intelligence (AI), provided richer services for CPMT but also led to problems of idle on-site computing resources, and excessive pressure on the cloud, slow service response and poor privacy. To solve the above problems, this paper proposes a cloud-edge collaboration-based CPMT architecture, which makes full use of the computing resources of existing devices in the industrial sites, offloads digital twin (DT) modeling and data processing from the cloud to the edge, and provides microservice interfaces for users at the edge. Given the limited computing resources available in the field and the demand for latency-sensitive applications, task offloading methods aimed at response speed and load balancing are proposed, respectively. Finally, a case of machine tool Prognostics and Health Management (PHM) service is presented, in which the proposed method is used to perform tool wear monitoring, prediction, and health management

    Advances in Bi<sub>2</sub>WO<sub>6</sub>-Based Photocatalysts for Degradation of Organic Pollutants

    No full text
    With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts

    Data cleansing for energy-saving: a case of Cyber-Physical Machine Tools health monitoring system

    No full text
    Cyber-Physical Production Systems (CPPS) often use wireless sensor networks (WSNs) for monitoring purposes. However, data from WSNs may be inaccurate and unreliable due to power exhaustion, noise and other issues. In order to achieve a reliable and accurate data acquisition while ensuring low energy consumption and long lifetime of WSNs, data cleansing algorithms for energy-saving are proposed in this research. The cleansing algorithms are computationally lightweight in local sensors and energy-efficient due to low energy consumption in communications. Dynamic voltage scaling and dynamic power management are adopted for reducing energy consumption, without compromising the performance at system level. A low-power protocol for sink node communication is proposed at network level. A health monitoring system for a Cyber-Physical Machine Tool (a typical example of CPPS) is designed. Experiment results show that the proposed energy-saving data cleansing algorithm yields high-performance and effective monitoring

    Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology

    No full text
    This paper examines the effect of the melt viscosities of the two component polymers on the morphology and mechanical properties of a series of biodegradable polymer blends. Melt blended compounds of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are prepared and their melt viscosities, thermal properties, crystallinity, mechanical properties and phase morphology are investigated. From the relative melt viscosities of PLA and PBAT in the processing regime used in the study, it is possible to calculate the volume fraction at which a co-continuous phase structure is formed. The predicted value is 19 wt% of PBAT and this value is verified by the results of mechanical properties, where results for elongation-to-break show a dramatic rise from around 10% up to 300% in the composition range between 10 and 20 wt% of PBAT. The co-continuous phase structure is also validated by scanning electron microscopy. Graphical Abstract: [Figure not available: see fulltext.

    Cyclic fatigue resistance of two nickel-titanium instruments in different curving angles: a comparative study

    No full text
    The cyclic resistance of ProTaper Universal (size 25/08) and ProTaper Next (size 25/06) instruments was compared in artificial canals with different curvatures in this study. A total of 30 ProTaper Universal and 30 ProTaper Next instruments were divided into 6 groups (n = 10) and were operated into artificial canals with 3 different angles of curvature (45°, 60°, 90°). The canal length was kept consistent in this study. The number of cycles to fracture (NCF) was counted until file fracture occurred, at which point, the length of the fragment was measured. The data were analyzed statistically using ANOVA complemented by the Tukey test (p < 0.05). Cross sections of the fractured files were scanned by an electron microscope. In the fatigue test, the ProTaper Next displayed more resistance in 45° and 60° canals (p < 0.05), whereas ProTaper Universal exhibited a better operability in 90° canals (p < 0.05). The average length of the fragments from ProTaper Next was significantly shorter than that from ProTaper Universal in 90° canals (p < 0.05). The cross sections of the fractured surfaces became flatter when the curvature angles decreased from 90° to 45°. ProTaper Next was more reliable when shaping in curved canals, whereas ProTaper Universal was more sui for the preparation of root canals with severe curvatures
    corecore